Как проверяются электролабораторией дифавтоматы

Вне зависимости от того, в какой форме в электросети реализована защита от сверхтоков, проверка защитных модулей должна выполняться согласно методикам, разработанным для конкретного типа функционального оборудования. В связи с чем, проверка дифференциального автомата выполняется с учётом двух алгоритмов – для УЗО и для автоматических выключателей.

Отличие от стандартной методики проверки АВ в данном случае заключается в том, что при проведении тестов следует учитывать взаимное влияние двух приборов, если их механическое или электрическое разделение невозможно.

В данном обзоре рассмотрено, какие основные показатели должны быть измерены в ходе лабораторных испытаний дифавтоматов и что надо учитывать, чтобы в ходе тестов не повредить УЗО.

Особенность проверки дифавтомата

В статье «Зачем и как проверяется работоспособность УЗО» мы уже рассказывали о том, что такое дифавтомат и чем он отличается от УЗО. Здесь же напомним, что данный прибор является комбинацией из классического автоматического выключателя с электронным или тепловым (и электромагнитным) расцепителем и системы дифференциального контроля токов утечки.

По сути, это два разных прибора в одном корпусе, соединённых последовательно.

Пределы срабатывания АВ в дифавтоматах выбираются такими, чтобы максимальный импульс тока, который может пройти через прибор, был меньше максимального допустимого тока, проходящего через УЗО.

Теоретически, проверка дифавтоматов может состоять из двух автономных циклов:

  • испытание УЗО;
  • проверка устройства автоматического отключения.

Учитывая, что мощность тестовых импульсов при тестировании УЗО намного меньше тех, которые необходимы для проверки защиты от сверхтоков, испытание этого субмодуля в дифавтомате производится практически по той же схеме, что и для отдельного прибора (данная методика подробно рассмотрена в статье «Как выполняется тестирование УЗО в лабораторных условиях»).

Но для проверки АВ необходимо разрабатывать отдельный алгоритм, который бы учитывал влияние токов утечки в испытательном оборудовании и исключал бы применение критических значений тестовых токов.

Нормативной базой в данном случае являются следующие стандарты:

  • ГОСТ Р 51327.1-2010 (параметры и методы проверки УЗО);
  • ГОСТ Р 50345-2010 (автоматические выключатели защиты от сверхтоков, параметры и методы проверки работоспособности);
  • ГОСТ Р МЭК 60898-2-2006 (корректирующие уточнения к приведенным выше стандартам).

Кроме этого, при разработке технологических карт для ЭТЛ рекомендуется использовать термины и определения, изложенные в ГОСТ 50031-2012.

Виды автоматических выключателей

Любое методическое руководство должно оговаривать, для каких типов защитных автоматов оно разработано.

В данном случае в состав дифавтоматов входят АВ («автоматические выключатели»), используемые в сетях до 1000 В, максимальное напряжение между фазами которых не превышает 440 В.

В приведенных выше стандартах приводится три классификационных схемы для таких приборов.

По количеству полюсов

В зависимости от количества контролируемых фазных линий автоматические выключатели делятся на следующие категории:

  • однофазные (одно- и двухполюсные) или трехфазные (трех- и четырехполюсные);
  • для постоянного или переменного токов.

Отметим, что проверка правильности монтажа присутствует практически в каждой методике тестирования, поэтому в таблице ниже мы привели информацию, на основании которой можно сделать вывод о корректности схемного размещения того или иного выключателя.

Виды автоматических выключателей

Под однополюсным автоматом в данном случае понимается прибор, контролирующий превышение тока только по одной фазе.

Различие между однополюсными и двухполюсными автоматом

По току мгновенного расцепления

На сегодняшний день различают две группы выключателей, принадлежащих разным диапазонам токов мгновенного отключения (ранее было три):

  • группа «B» (от 3 до 5 In);
  • группа «C» (от 5 до 10 In).
Диапазоны токов мгновенного расцепления

В ходе проверки правильности выбора защитных автоматов следует учитывать не только номинальную мощность сети, но и пусковые токи некоторых электромашин, которые могут достигать 5-7 In.

Напомним, что под номинальным током защитного автомата может пониматься как максимально допустимый ток, проходящий через коммутационную цепь автомата, так и предельные токи, протекание которых через тепловой расцепитель не приводят к размыканию контактов.

В данном случае под In подразумевается максимальный нерасцепляющий ток.

По постоянной времени

Этот классификатор применяется к выключателям, работающим в цепях с постоянным током.

Различают две подгруппы выключателей, разделяемых по этому параметру:

  • с постоянной времени Тс<4 мс;
  • Тс<15 мс.

Что проверяется

Полный список параметров, подвергаемых контролю при разработке или лабораторных испытаниях защитных автоматов, приведен в ГОСТ Р 50345-2010.

На практике чаще всего проверяют нормы времени и токов, отводимые на срабатывание расцепляющего механизма.

Предельные значения этих параметров с привязкой к токовым категориям устройств приведены в следующей таблице:

Время-токовые характеристики

В целом, испытательный алгоритм состоит как из измерительных операций, так и из действий по проверке общего технического состояния защитной системы:

  • контроль механической износостойкости;
  • проверку устойчивости к механическим ударам;
  • измерение время-токовых параметров;
  • всесторонний контроль электроизолирующих свойств.
Обратите внимание, что общая последовательность действий подразделяется на несколько циклов, состав которых чётко оговорен в стандартах.

Необходимо отметить, что из-за критических перегрузок, возникающих в ходе прогрузки защитных автоматов, соответствующая технологическая карта действий должна содержать операции по вторичной проверке работоспособности прибора после испытаний на короткое замыкание.

Методика испытаний дифавтоматов

Каждая конкретная методика испытаний защитных отключающих устройств разрабатывается с учётом специфических особенностей участка, на котором они эксплуатируются.

В любом случае она должна базировать на алгоритмах, рассмотренных в приведенных выше стандартах. В пакете документов, подаваемом на аттестацию электроизмерительной лаборатории, она должна быть оформлена отдельной инструкцией.

Следует отметить, что испытания данного типа выполняются с подачей мощных импульсов тока, что часто приводит к неплановому срабатыванию УЗО, поэтому практическая технология тестирования дифавтомата должна предусматривать сборку специальных измерительных схем или коммутационное разделение автомата и УЗО.

Учитывая большое разнообразие аппаратных решений для дифференциального модуля и, как следствие, непредсказуемость их поведения, чаще всего прибегают ко второму варианту, размыкая цепи, соединяющие УЗО и АВ.

Провода, соединяющие УЗО и автомат

Измерение время-токовых параметров производят с применением специального оборудования, позволяющего отслеживать временные параметры мощных импульсов тока. Электролаборатории, оказывающие услуги данного типа, для этих целей обычно используют прибор УПТР.

Прибор УПТР в работе

Испытания и замеры проводятся с помощью схемы, изображённой на следующем рисунке:

Схема УПТР

Результаты измерений регистрируются в рабочем журнале и после математической обработки оформляются в виде протокола испытаний.

Электротехническая лаборатория «Мега.ру» принимает заказы на проведение испытаний всех видов электроустановок, включая системы защитного отключения. Уточнить детали сотрудничества и сделать заказ на проведение работ можно по телефонам, размещенным в разделе «Контакты».

 

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: